如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点,求证:平面A B1D1∥平面EFG; (2) 求证:平面AA1C⊥面EFG.
已知数列满足,,. (1)求证:是等差数列; (2)证明:.
已知向量,,. (1)若⊥,求的值; (2)若∥,求的值.
已知数列的前n项和为,设数列满足. (1)若数列为等差数列,且,求数列的通项公式; (2)若,,且数列,都是以2为公比的等比数列,求满足不等式的所有正整数n的集合.
已知函数. (1)当时,求的单调减区间; (2)若方程恰好有一个正根和一个负根,求实数的最大值.
在平面直角坐标系xOy中,已知椭圆C:的离心率为,且过点,过椭圆的左顶点A作直线轴,点M为直线上的动点,点B为椭圆右顶点,直线BM交椭圆C于P. (1)求椭圆C的方程; (2)求证:; (3)试问是否为定值?若是定值,请求出该定值;若不是定值,请说明理由.