如图,在网格中有一个四边形的图案。请你画出此图案绕点O顺时针方向旋转90°,180°,270°的图案,你会得到一个美丽的图案,千万不要将阴影位置涂错;若网格中每个小正方形的边长为1,旋转后点的对应点依次为,,,求四边形的面积;这个美丽图案能够证明一个我们学过的著名定理,请直接写出这个定理名称,不要求证明。
已知直线y=kx-3与x轴交于点A(4,0),与y轴交于点C,抛物线经过点A和点C,动点P在x轴上以每秒1个长度单位的速度由抛物线与x轴的另一个交点B向点A运动,点Q由点C沿线段CA向点A运动且速度是点P运动速度的2倍.(1)求此抛物线的解析式和直线的解析式;(2)如果点P和点Q同时出发,运动时间为t(秒),试问当t为何值时,以A、P、Q为顶点的三角形与△AOC相似;(3)在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大.若存在,求出点D的坐标;若不存在,请说明理由.
如图(1)是某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景观灯.现把拱桥的截面图放在平面直角坐标系中,如图(2).求(1)抛物线的解析式;(2)两盏景观灯P1、P2之间的水平距离.
如图,一艘海轮位于灯塔P的南偏东60º方向,距离灯塔100海里的A处,它计划沿正北方向航行,去往位于灯塔P的北偏东45º方向上的B处.(参考数据) (1)问B处距离灯塔P有多远?(结果精确到0.1海里) (2)假设有一圆形暗礁区域,它的圆心位于射线PB上,距离灯塔190海里的点O处.圆形暗礁区域的半径为50海里,进入这个区域,就有触礁的危险.请判断海轮到达B处是否有触礁的危险,并说明理由.
如图,△ABC是⊙O的内接三角形,⊙O的直径BD交AC于点E,AF⊥BD与点F,延长AF交BC于点G.求证:AB2=BG·BC
如图,一次函数y1=x+1的图象与反比例函数(k为常数,且)的图象都经过点A(m,2).(1)求点A的坐标及反比例函数的解析式;(2)观察图象,当x>0时,直接写出y1与y2的大小关系.