(本小题满分12分)某班级甲组有6名学生,其中有3名女生;乙组有6名学生,其中有2名女生.现采用分层抽样(层内采用不放回简单随即抽样)从甲、乙两组中共抽取4名学生进行社会实践活动.(1)求从甲组抽取的学生中恰有1名女生的概率;(2)求从乙组抽取的学生中至少有1名男生的概率;(3)求抽取的4名学生中恰有2名女生的概率.
已知函数(为小于的常数). (1)当时,求函数的单调区间; (2)存在使不等式成立,求实数的取值范围.
如图,四棱锥中,,,,平面⊥平面,是线段上一点,,. (1)证明:⊥平面; (2)若,求直线与平面所成角的正弦值.
已知椭圆过点且离心率为. (1)求椭圆的方程; (2)若斜率为的直线交于两点,且,求直线的方程.
已知函数在处取极值. (1)求的值; (2)求在上的最大值和最小值.
某研究性学习小组有名同学. (1)这名同学排成一排照相,则同学甲与同学乙相邻的排法有多少种? (2)从名同学中选人参加班级接力比赛,则同学丙不跑第一棒的安排方法有多少种?