已知函数是奇函数,且满足(Ⅰ)求实数、的值; (Ⅱ)试证明函数在区间单调递减,在区间单调递增;(Ⅲ)是否存在实数同时满足以下两个条件:1不等式对恒成立; 2方程在上有解.若存在,试求出实数的取值范围,若不存在,请说明理由.
(本小题满分14分)在周长为定值的中,已知,动点的运动轨迹为曲线G,且当动点运动时,有最小值. (1) 以所在直线为轴,线段的中垂线为轴建立直角坐标系,求曲线的方程; (2) 过点作圆的切线交曲线于,两点.将线段MN的长|MN|表示为的函数,并求|MN|的最大值.
(本小题满分13分)已知,函数,. (1)判断函数在区间上的单调性(其中为自然对数的底数); (2)是否存在实数,使曲线在点处的切线与轴垂直 若存在,求出的值;若不存在,请说明理由.
本小题满分12分)如图菱形的边长为,,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,. (1) 求证:平面; (2) 求证:平面平面; (3) 求三棱锥的体积.
(本小题满分12分)已知直线:与直线:互相平行,经过点的直线与,垂直,且被,截得的线段长为,试求直线的方程.
(本小题满分12分)已知函数. (1)设,且,求的值; (2)在△ABC中,AB=1,,且△ABC面积为,求sinA+sinB的值.