已知椭圆的中心在原点,焦点在x轴上,椭圆的短轴端点和焦点所围成的四边形的正方形,且椭圆上的点到焦点的距离的最大值为+1,(1)求椭圆的标准方程(2)过椭圆的左焦点F且不与坐标轴垂直的直线交椭圆于A、B两点,线段AB的垂直平分线与x轴交于G点,求G点的横坐标的取值范围
(本小题满分12分)已知为等差数列,且,, (1)求的通项公式; (2)若等比数列满足,,求的前n项和公式.
(本小题满分12分)在中,分别根据下列条件解三角形: (1);(2)
某软件公司新开发一款学习软件,该软件把学科知识设计为由易到难共12关的闯关游戏.为了激发闯关热情,每闯过一关都奖励若干慧币(一种网络虚拟币).该软件提供了三种奖励方案:第一种,每闯过一关奖励40慧币;第二种,闯过第一关奖励4慧币,以后每一关比前一关多奖励4慧币;第三种,闯过第一关奖励0.5 慧币,以后每一关比前一关奖励翻一番(即增加1倍),游戏规定:闯关者须于闯关前任选一种奖励方案. (Ⅰ)设闯过n (n∈N,且n≤12)关后三种奖励方案获得的慧币依次为,,,试求出An,,的表达式; (Ⅱ)如果你是一名闯关者,为了得到更多的慧币,你应如何选择奖励方案?
已知数列{an}的前n项和(其中c,k为常数),且, (1)求; (2)求数列{ }的前n项和.
在△ABC中,内角A,B,C所对的边分别为a,b,c,已知 (1)求证:a,b,c成等比数列; (2)若a=1,c=2,求△ABC的面积S.