(14分)已知、是椭圆的左、右焦点,A是椭圆上位于第一象限内的一点,点B也在椭圆上,且满足为坐标原点),,若椭圆的离心率等于(1)求直线AB的方程; (2)若的面积等于,求椭圆的方程;(3)在(2)的条件下,椭圆上是否存在点M使得的面积等于?若存在,求出点M的坐标;若不存在,说明理由.
已知a为实数,求当直线l1:ax+y+1=0与l2:x+y-a=0相交时的交点坐标.
某商品的市场需求量y1(万件)、市场供应量y2(万件)与市场价格x(元/件)分别近似地满足下列关系:y1=-x+70,y2=2x-20.当y1=y2时的市场价格称为市场平衡价格,此时的需求量称为平衡需求量. (1)求平衡价格和平衡需求量; (2)若要使平衡需求量增加4万件,政府对每件商品应给予多少元补贴?
已知数列{ a n}的各项都是正数,且满足:a0=1,an+1=an·(4-an)(n∈N). 证明:an<an+1<2(n∈N).
一个小朋友在一次玩皮球时,偶然发现一个现象:球从某高度落下后,每次都反弹回原高度的,再落下,再反弹回上次高度的,如此反复.假设球从100 cm处落下,那么第10次下落的高度是多少?在第10次落地时共经过多少路程?试用伪代码表示其算法.
已知数列{ a n}的各项都是正数,且满足:a0=1,an+1=an·(4-an)(n∈N). 证明:an<an+1<2(n∈N).