(14分)已知、是椭圆的左、右焦点,A是椭圆上位于第一象限内的一点,点B也在椭圆上,且满足为坐标原点),,若椭圆的离心率等于(1)求直线AB的方程; (2)若的面积等于,求椭圆的方程;(3)在(2)的条件下,椭圆上是否存在点M使得的面积等于?若存在,求出点M的坐标;若不存在,说明理由.
已知椭圆:,离心率为,焦点过的直线交椭圆于两点,且的周长为4.(Ⅰ)求椭圆方程;(Ⅱ) 直线与y轴交于点P(0,m)(m0),与椭圆C交于相异两点A,B且.若,求m的取值范围。
(理)已知函数f(x)= -lnx,x∈[1,3].(Ⅰ)求f(x)的最大值与最小值;(Ⅱ)若f(x)<4-At对于任意的x∈[1,3],t∈[0,2]恒成立,求实数A的取值范围.
已知四棱锥P-ABCD的底面ABCD是边长为1的正方形,PD⊥底面ABCD,PD="AD." (Ⅰ)求证:BC∥平面PAD;(Ⅱ)若E、F分别为PB,AD的中点,求证:EF⊥BC;(Ⅲ)求二面角C-PA-D的余弦值.
已知A,B,C,D四个城市,它们各自有一个著名的旅游点,依次记为A,b,C,D,把A,B,C,D和A,b,C,D分别写成左、右两列.现在一名旅游爱好者随机用4条线把城市与旅游点全部连接起来, 构成“一一对应”.规定某城市与自身的旅游点相连称为“连对”,否则称为“连错”,连对一条得2分,连错一条得0分. (Ⅰ)求该旅游爱好者得2分的概率. (Ⅱ)求所得分数的分布列和数学期望.
在⊿ABC中,角A,B,C的对边分别为A,b,C,且满足(2A-C)CosB=bCosC.(Ⅰ)求角B的大小;(Ⅱ)已知函数f(A,C)=Cos2A+sin2C,求f(A,C)的最大值。