(本小题满分13分)函数.(Ⅰ)若,在处的切线相互垂直,求这两个切线方程;(Ⅱ)若单调递增,求的范围.
如图所示,某建筑工地准备建造一间两面靠墙的三角形露天仓库堆放材料,已知已有两面墙、的夹角为(即),现有可供建造第三面围墙的材料米(两面墙的长均大于米),为了使得仓库的面积尽可能大,记,问当为多少时,所建造的三角形露天仓库的面积最大,并求出最大值?
如图,一半径为的圆形靶内有一个半径为的同心圆,将大圆分成两部分,小圆内部区域记为环,圆环区域记为环,某同学向该靶投掷枚飞镖,每次枚. 假设他每次必定会中靶,且投中靶内各点是随机的.(1)求该同学在一次投掷中获得环的概率;(2)设表示该同学在次投掷中获得的环数,求的分布列及数学期望.
已知函数.(1)当时,求函数的单调区间;(2)当时,函数图象上的点都在所表示的平面区域内,不等式恒成立,求实数的取值范围.
已知抛物线上有一点到焦点的距离为.(1)求及的值.(2)如图,设直线与抛物线交于两点,且,过弦的中点作垂直于轴的直线与抛物线交于点,连接.试判断的面积是否为定值?若是,求出定值;否则,请说明理由.
数列的前n项和为,,且对任意的均满足.(1)求数列的通项公式; (2)若,,(),求数列的前项和.