为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用年的隔热层,每厘米厚的隔热层建造成本为万元.该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度(单位:)满足关系:=若不建隔热层,每年能源消耗费用为万元。设为隔热层建造费用与年的能源消耗费用之和.(1)求的值及的表达式;(2)隔热层修建多厚时,总费用达到最小,并求最小值.
设命题:函数在上为减函数, 命题的值域为,命题函数定义域为 (1)若命题为真命题,求的取值范围。 (2)若或为真命题,且为假命题,求的取值范围.
已知函数对于任意的满足. (1)求的值; (2)求证:为偶函数; (3)若在上是增函数,解不等式
已知函数的定义域为, (1)求; (2)当时,求函数的最大值。
已知函数. (Ⅰ)若在实数集R上单调递增,求的范围; (Ⅱ)是否存在实数使在上单调递减.若存在求出的范围,若不存在说明理由.
已知函数f(x)=ax2+2x+c(a、c∈N*)满足:①f(1)=5;②6<f(2)<11. (1)求a、c的值; (2)若对任意的实数x∈,都有f(x)-2mx≤1成立,求实数m的取值范围.