有一个数学活动,其具体操作过程是: 第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1);第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2).请解答以下问题:如图2,若延长MN交线段BC于P,△BMP是什么三角形?请证明你的结论.在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP
如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-3,-1),B(-5,-4),C(-2,-3)(1)作出△ABC向上平移6个单位,再向右平移7个单位的△A1B1C1。(2)作出△ABC关于y轴对称的△A2B2C2,并写出点C2的坐标;(3)将△ABC绕点O顺时针旋转900后得到△A3B3C3,请你画出旋转后的△A3B3C3
请在同一坐标系中画出二次函数①;②的图象。说出两条抛物线的位置关系,指出②的开口方向、对称轴和顶点坐标及增减性。
解下列方程: (1) (2)
如图,点A是反比例函数 图像上的一点,过点A作AB⊥轴于点B,且△AOB的面积为2,点A的坐标为. (1)求m和k的值. (2)若一次函数y=ax+3的图像经过点A,交双曲线的另一支于点C,交y轴于点D,求△AOC的面积. (3)在轴上是否存在点P,使得△PAC的面积为6?如果存在,请求出点P的坐标;若不存在,请说明理由.
如图,有一段15m长的旧围墙AB,现打算利用该围墙的一部分(或全部)为一边,再利用32m长的篱笆围成一块长方形场地CDEF. (1)当CD等于多少米时,该场地的面积为126m²? (2)该场地面积能达到130m²吗?如果能,请求出CD的长度,如果不能,请说明理由.