如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900.M为AB的中点(1)求证:BC//平面PMD(2)求证:PC⊥BC; (3)求点A到平面PBC的距离.
(本小题满分10分)经过点,倾斜角为的直线,与曲线:(为参数)相交于两点.(1)写出直线的参数方程,并求当时弦的长;[(2)当恰为的中点时,求直线的方程;(3)当时,求直线的方程;(4)当变化时,求弦的中点的轨迹方程.
(本小题满分10分)设,其中为正整数.(1)求,,的值;(2)猜想满足不等式的正整数的范围,并用数学归纳法证明你的猜想.
(本小题满分8分)设函数.(1)当时,解关于的不等式;(2)如果,,求的取值范围.
已知各项均为正数的数列 a n 的前 n 项和满足 S 1 > 1 ,且 6 S n = a n + 1 a n + 2 , n ∈ N * .
(1)求 a n 的通项公式; (2)设数列 b n 满足 a n 2 b n - 1 = 1 ,并记 T n 为 b n 的前 n 项和,求证: 3 T n + 1 > log 2 a n + 3 , n ∈ N * .
已知函数 f ( x ) = a x 4 ln x + b x 4 - c ( x > 0 ) 在 x = 1 处取得极值 - 3 - c ,其中 a , b , c 为常数。 (1)试确定 a , b 的值; (2)讨论函数 f ( x ) 的单调区间; (3)若对任意 x > 0 ,不等式 f ( x ) ≥ - 2 c 2 恒成立,求 c 的取值范围.