椭圆E的中心在原点O,焦点在x轴上,离心率e=,过点C(-1,0)的直线交椭圆于A,B两点,且满足,为常数。(1)当直线的斜率k=1且时,求三角形OAB的面积. (2)当三角形OAB的面积取得最大值时,求椭圆E的方程.
选修4-1:几何证明选讲如图所示,为的直径,为的中点,为的中点.(Ⅰ)求证:;(Ⅱ)求证:.
已知函数.(Ⅰ)设是函数的极值点,求的值并讨论的单调性;(Ⅱ)当时,证明:.
已知椭圆:的一个焦点为,左右顶点分别为,.经过点的直线与椭圆交于,两点.(Ⅰ)求椭圆方程;(Ⅱ)记与的面积分别为和,求的最大值.
如图所示,四棱锥的底面是直角梯形, ,,,底面,过的平面交于,交于(与不重合). (Ⅰ)求证:; (Ⅱ)如果,求此时的值.
已知数列的前项和为,若(),且.(Ⅰ)求证:数列为等差数列;(Ⅱ)设,数列的前项和为,证明:().