设 (1)若在[1,上递增,求的取值范围;(2)求在[1,4]上的最小值
(本题满分14分) 设{an}是由正数组成的等差数列,Sn是其前n项和 (1)若,求的值; (2)若互不相等正整数p,q,m,使得p+q=2m,证明:不等式成立; (3)是否存在常数k和等差数列{an},使恒成立(n∈N*),若存在,试求出常数k和数列{an}的通项公式;若不存在,请说明理由。
(本题满分13分) 已知函数,数列满足,. (Ⅰ)求数列的通项公式; (Ⅱ)求; (Ⅲ)求证:
(本题满分13分) 已知函数,. (1)当时,若上单调递减,求a的取值范围; (2)求满足下列条件的所有整数对:存在,使得的最大值,的最小值;
(本题满分13分已知数列是公比为的等比数列,且成等差数列. (Ⅰ) 求的值; (Ⅱ) 设数列是以2为首项,为公差的等差数列,其前项和为, 试比较与的大小.
(本题满分13分)已知函数满足且对于任意, 恒有成立. (1) 求实数的值; (2) 解不等式.