车站每天8∶00-9∶00,9∶00-10∶00都恰有一辆客车到站,8∶00-9∶00到站的客车A可能在8∶10,8∶30,8∶50到站,其概率依次为;9∶00-10∶00到站的客车B可能在9∶10,9∶30,9∶50到站,其概率依次为.(1)旅客甲8∶00到站,设他的候车时间为,求的分布列和;(2)旅客乙8∶20到站,设他的候车时间为,求的分布列和.
设函数,的图象关于直线对称,其中为常数,且.(1)求函数的最小正周期;(2)若的图象经过点,求函数在上的值域.
如图,在平面直角坐标系中,点A(0,3),直线:,设圆的半径为1,圆心在上.(1)若圆心也在直线上,过点A作圆的切线,求切线的方程;(2)若圆上存在点,使,求圆心的横坐标的取值范围.
正项数列满足:.(1)求数列的通项公式;(2)令,求数列的前项和.
已知函数,且在时函数取得极值.(1)求的单调增区间;(2)若,(Ⅰ)证明:当时,的图象恒在的上方;(Ⅱ)证明不等式恒成立.
如图示:已知抛物线的焦点为,过点作直线交抛物线于、两点,经过、两点分别作抛物线的切线、,切线与相交于点.(1)当点在第二象限,且到准线距离为时,求;(2)证明:.