如图所示,在⊙O中,AB是直径,CD是弦,ABCD,AB=12cm.F是上一点(不与C、D重合),求证:∠CFD=∠COB;若∠CFD=60,求CD的长
先化简,再求值:,其中.
如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,抛物线经过,两点且与轴的负半轴交于点.
(1)求该抛物线的解析式;
(2)若点为直线上方抛物线上的一个动点,当时,求点的坐标;
(3)已知,分别是直线和抛物线上的动点,当以,,,为顶点的四边形是平行四边形时,直接写出所有符合条件的点的坐标.
定义:有一组邻边相等且对角互补的四边形叫做等补四边形.
理解:
(1)如图1,点,,在上,的平分线交于点,连接,.
求证:四边形是等补四边形;
探究:
(2)如图2,在等补四边形中,,连接,是否平分?请说明理由.
运用:
(3)如图3,在等补四边形中,,其外角的平分线交的延长线于点,,,求的长.
某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第天的生产成本(元件)与(天之间的关系如图所示,第天该产品的生产量(件与(天满足关系式.
(1)第40天,该厂生产该产品的利润是 元;
(2)设第天该厂生产该产品的利润为元.
①求与之间的函数关系式,并指出第几天的利润最大,最大利润是多少?
②在生产该产品的过程中,当天利润不低于2400元的共有多少天?
如图,在中,,为的中点,以为直径的分别交,于点,两点,过点作于点.
(1)试判断与的位置关系,并说明理由.
(2)若,,求的长.