若椭圆C1:的离心率等于,抛物线C2:x2=2py(p>0)的焦点在椭圆C1的顶点上.(1)求抛物线C2的方程;(2)若过M(-1,0)的直线l与抛物线C2交于E、F两点,又过E、F作抛物线C2的切线l1、l2,当l1⊥l2时,求直线l的方程.
在中,,. (Ⅰ)求的值;(Ⅱ)设,求的面积.
设椭圆过两点,为坐标原点。 (I)求椭圆的方程; (II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点.且?若存在,写出该圆的方程,并求的取值范围,若不存在说明理由。
解关于的不等式 (其中)
已知等差数列的公差大于,且是方程的两根,数列的前项的和为,且. (1)求数列,的通项公式; (2) 记,求数列的前项和
圆过点,圆心在上,并与直线相切,求该圆的方程。