在平面直角坐标系内,A、B、C三点的坐标分别是A(5,0)、B(0,3)、C(5,3),O 为坐标原点,点E在线段BC上,若△AEO为等腰三角形, 求点E的坐标.(画出图象,不需要写计算过程)
如图,BD平分∠ABC,且AB=4,BC=6,则当BD= 时,△ABD∽△DBC.
已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=mx+n(m≠0)的图象相交于点A(―2,4),B(8,2),如图所示,则能使y1<y2成立的x的取值范围是 .
如图,已 知直线 交坐标轴于两点,以线段为边向上作正方形,过点的抛物线与直线另一个交点为.(1)请直接写出点的坐标; (2)求抛物线的解析式;(3)若正方形以每秒个单位长度的速度沿射线下滑,直至顶点落在x轴上时停止.设正方形落在轴下方部分的面积为,求关于滑行时间的函数关系式,并写出相应自变量的取值范围;(4)在(3)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上两点间的抛物线弧所扫过的面积.
有一种葡萄:从树上摘下后不保鲜最多只能存放一周,如果放在冷藏室,可以延长保鲜时间,但每天仍有一定数量的葡萄变质,假设保鲜期内的重量基本保持不变,现有一位个体户,按市场价收购了这种葡萄200千克放在冷藏室内,此时市场价为每千克2元,据测算,此后每千克鲜葡萄的市场价格每天可以上涨0.2元,但是,存放一天需各种费用20元,平均每天还有1千克葡萄变质丢弃.(1)设5天后每千克鲜葡萄的市场价为P元,则P= ;(2)若存放x天后将鲜葡萄一次性出售,销售金额为760元,求x的值 ? (3)问个体户将这批葡萄存放多少天后出售,可获得最大利润?最大利润Q是多少?
如图,等边边长为4,是边上动点,于H,过作∥,交线段于点,在线段上取点,使 。设。(1)请直接写出图中与线段相等的两条线段(不再另外添加辅助线);(2)是线段上的动点,当四边形是平行四边形时,求平行四边形 的面积(用含的代数式表示);(3)当(2)中的平行四边形EFPQ面积最大时,以E为圆心,r为半径作圆,根据⊙E与此时平行四边形EFPQ四条边交点的总个数,直接写出相应的的取值范围。