( 9分) 如图,过椭圆的左焦点F任作一条与两坐标轴都不垂直的弦AB,若点M在x轴上,且使得MF为△AMB的一条内角平分线,则称点M为该椭圆的“左特征点”.求椭圆的“左特征点”M的坐标;
已知定义在R上的函数(a,b,c,d为实常数)的图象关于原点对称,且当x=1时f(x)取得极值.(Ⅰ)求函数f(x)的解析式;(Ⅱ)证明:对任意∈[-1,1],不等式成立;(Ⅲ)若函数在区间(1,∞)内无零点,求实数m的取值范围.
已知动点P到直线的距离比它到点F的距离大.(Ⅰ)求动点P的轨迹方程;(Ⅱ)若点P的轨迹上不存在两点关于直线l:对称,求实数的取值范围.
如图,四棱柱ABCD—A1B1C1D1的底面边长和侧棱长都等于2,平面A1ACC1⊥平面ABCD,∠ABC=∠A1AC=60°,点O为底面对角线AC与BD的交点.(Ⅰ)证明:A1O⊥平面ABCD;(Ⅱ)求二面角D—A1A—C的平面角的正切值.
点是单位圆上的两点,点分别在第一、二象限,点是圆与轴正半轴的交点,是正三角形,若点的坐标为,记.(1)求的值; (2)求的值.
在中,角的对边分别为. (I)求; (II)若,且,求.