如图,抛物线(a0)与反比例函数的图像相交于点A,B. 已知点A的坐标为(1,4),点B(t,q)在第三象限内,且△AOB的面积为3(O为坐标原点) 求反比例函数的解析式 用含t的代数式表示直线AB的解析式; 求抛物线的解析式; 过抛物线上点A作直线AC∥x轴,交抛物线于另一点C,把△AOB绕点O逆时针旋转90º,请在图②中画出旋转后的三角形,并直接写出所有满足△EOC∽△AOB的点E的坐标.
如图,一次函数y=kx+b的图象与坐标轴分别交于A,B两点,与反比例函数y=的图象在第二象限的交点为C,CD⊥x轴,垂足为D,若OB=2,OD=4,△AOB的面积为1.(1)求一次函数与反比例的解析式;(2)直接写出当x<0时,kx+b﹣>0的解集.
春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图对话中收费标准.某位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?www-2-1-cnjy-com
如图1,A、B两个转盘分别被分成三个、四个相同的扇形,分别转动A盘、B盘各一次(若指针恰好指在分割线上,则重转一次,直到指针指向一个数字为止).(1)用列表(或画树状图)的方法,求两个指针所指的区域内的数字之和大于7的概率;(2)如果将图1中的转盘改为图2,其余不变,求两个指针所指区域的数字之和大于7的概率.
如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.
如图,直线y=x+b(b≠0)交坐标轴于A、B两点,点D在直线上,D的横纵坐标之积为2,过D作两坐标轴的垂线DC、DE,连接OD.(1)求证:AD平分∠CDE;(2)对任意的实数b(b≠0),求证:AD•BD为定值;(3)是否存在直线AB,使得四边形OBCD为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由.