设是坐标平面上的一列圆,它们的圆心都在轴的正半轴上,且都与直线相切,对每一个正整数,圆都与圆相互外切,以表示的半径,已知为递增数列.(Ⅰ)证明:为等比数列;(Ⅱ)设,求数列的前项和.
已知函数为偶函数,关于的方程的构成集合. (1)求的值; (2)若,求证:; (3)设,若存在实数使得,求实数的取值范围.
已知函数是奇函数. (1)求实数m的值; (2)是否存在实数,当时,函数的值域是.若存在,求出实数;若不存在,说明理由; (3)令函数,当时,求函数的最大值.
如图,在长为10千米的河流OC的一侧有一条观光带,观光带的前一部分为曲线段OAB,设曲线段OAB为函数,(单位:千米)的图象,且图象的最高点为;观光带的后一部分为线段BC. (1)求函数为曲线段OABC的函数的解析式; (2)若计划在河流OC和观光带OABC之间新建一个如图所示的矩形绿化带MNPQ,绿化带由线段MQ,QP,PN构成,其中点P在线段BC上.当OM长为多少时,绿化带的总长度最长?
已知函数f(x)=2ax+(a∈R). (1)当时,试判断f(x)在上的单调性并用定义证明你的结论; (2)对于任意的,使得f(x)≥6恒成立,求实数a的取值范围.
已知函数为幂函数,且为奇函数. (1)求的值; (2)求函数在的值域.