选修4—5:不等式选讲(Ⅰ)若与2的大小,并说明理由;(Ⅱ)设是和1中最大的一个,当
如图,设抛物线的焦点为,动点在直线上 运动,过P作抛物线C的两条切线PA,PB,且与抛物线C分别相切于A,B两点. (1)求△APB的重心G的轨迹方程. (2)证明∠PFA=∠PFB.
已知正方形ABCD的边长为2,, 将正方形ABCD沿对角线BD折起,使,得到三棱锥,如图所示。 (1)当a=2时,求证:平面BCD; (2)当二面角的大小为时, 求二面角的正切值。
有一种舞台灯,外形是正六棱柱,在其每一个侧面(编号为①②③④⑤⑥)上安装5只颜色各异的灯,假若每只灯正常发光的概率为0.5,若一个侧面上至少有3只灯发光,则不需要更换这个面,否则需要更换这个面,假定更换一个面需要100元,用表示更换的面数,用表示更换费用。 (1)求①号面需要更换的概率; (2)求6个面中恰好有2个面需要更换的概率; (3)写出的分布列,求的数学期望。
已知等差数列的前n项和为,首项,公差,且成等比数列。 (1)求数列的通项公式及; (2)记=+++…+,=+ ++… +, 当n≥2时,试比较与的大小。
设函数. (1)求函数的单调区间和极值; (2)若关于x的方程有三个不同实根,求实数的取值范围; (3)已知当恒成立,求实数k的取值范围。