如图,⊙O的直径AB=4,点C、D为⊙O上两点,且∠CA B=45o,∠DAB=60o,F为的中点.沿直径AB折起,使两个半圆所在平面互相垂直(如图).(1)求证:OF//平面ACD;(2)求二面角C- AD-B的余弦值;(3)在上是否存在点G,使得FG∥平面ACD?若存在,试指出点G的位置,并求直线AG与平面ACD所成角的正弦值;若不存在,请说明理由.
已知三棱锥中,,,,,分别是,中点. (1)求证:; (2)求直线与平面所成角的正弦值.
设公比大于零的等比数列的前项和为,且,[,数列的前项和为,满足,,. (1)求数列、的通项公式; (2)满足对所有的均成立,求实数的取值范围.
△ABC的内角A,B,C对边分别是a,b,c,且,. (1)求角A与角B的大小; (2)若BC边上的中线AM的长为,求△ABC的面积.
在中,角、、所对的边分别是、、, 向量,且与共线. (1)求角的大小; (2)设,求的最大值及此时角的大小.
在△ABC中,角A,B,C所对的边分别为a,b,c, cosC+(cosA-sinA)cosB=0. (1)求角B的大小; (2)若a+c=1,求b的取值范围