某建筑公司用8000万元购得一块空地,计划在该地块上建造一栋至少12层、每层4000平方米的楼房。经初步估计得知,如果将楼房建为x(x12)层,则每平方米的平均建筑费用为Q(x)=3000+50x(单位:元),为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?每平方米的平均综合费最小值是多少?
((本小题12分) 设函数(1)求曲线在点处的切线方程。(2)若函数在区间内单调递增,求的取值范围。
((本小题满分12分)如图,四棱锥S—ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SB=.(Ⅰ)求面ASD与面BSC所成二面角的大小;(Ⅱ)设棱SA的中点为M,求异面直线DM与SB所成角的大小;(Ⅲ)求点D到平面SBC的距离.
((本小题满分12分)已知椭圆的中心在坐标原点,焦点在轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,短轴长为2.(Ⅰ)求椭圆的方程;(Ⅱ)设直线过且与椭圆相交于A,B两点,当P是AB的中点时,求直线的方程.
(本小题满分12分)设,求直线AD与平面的夹角。
已知命题若是的充分不必要条件,求的取值范围