(本小题满分14分)已知数列满足,.(Ⅰ)试判断数列是否为等比数列,并说明理由;(Ⅱ)设,数列的前项和为.求证:对任意的,
某家庭电话在家中有人时,打进的电话响第一声时被接的概率为0.1,响第二声时被接的概率为O.3,响第三声时被接的概率为0.4,响第四声时被接的概率为0.1,那么电话在响前4声内被接的概率是多少?
甲投篮命中率为O.8,乙投篮命中率为0.7,每人投3次,两人恰好都命中2次的概率是多少?
已知函数在处取得极小值2. (1)求函数的解析式; (2)求函数的极值; (3)设函数,若对于任意,总存在,使得,求实数的取值范围.
已知椭圆过点,且离心率. (1)求椭圆的标准方程; (2)是否存在过点的直线交椭圆于不同的两点M、N,且满足(其中点O为坐标原点),若存在,求出直线的方程,若不存在,请说明理由.
如图所示,在四棱锥中,底面ABCD是边长为a的正方形,侧面底面ABCD,且,若E,F分别为PC,BD的中点. (1)求证:平面PAD; (2)求证:平面PDC平面PAD; (3)求四棱锥的体积.