已知椭圆的中心在原点O,焦点在轴上,过右焦点F的直线与右准线交于点D,与椭圆交于A、B两点,右准线与轴交于C点,若成等差数列,且公差等于短轴长的.(1)求椭圆的离心率; (2)若的面积为,求椭圆的方程.
在直角坐标系中,直线的参数方程为(t为参数),再以原点为极点,以x正半轴为极轴建立坐标系,并使得它与直角坐标系有相同的长度单位,在该极坐标系中圆C的方程为.(1)求圆C的直角坐标方程;(2)设圆C与直线将于点、,若点的坐标为,求的值 .
如图,圆与圆内切于点,其半径分别为3与2,圆的弦交圆于点(不在上),是圆的一条直径.(1)求的值;(2)若,求到弦的距离.
已知存在实数和使得,(1)若,求的值;(2)当时,若存在实数使得对任意恒成立,求的最值.
已知直线被圆截得的弦长恰与椭圆的短轴长相等,椭圆的离心率.(1)求椭圆的方程;(2)已知过点的动直线交椭圆于两点,试问:在坐标平面上是否存在一个定点,使得无论如何转动,以为直径的圆恒过定点?若存在,求出点的坐标,若不存在,请说明理由.
我国政府对PM2.5采用如下标准: 某市环保局从一年365天的市区PM2.5监测数据中,随机抽取10天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶). (1)求这10天数据的中位数; (2)从这10天数据中任取4天的数据,记为空气质量达到一级的天数,求的分布列和期望; (3)以这10天的数据来估计这一年365天的空气质量情况,并假定每天之间的空气质量相互不影响.记为这一年中空气质量达到一级的天数,求的平均值.