(本小题满分12分)已知△ABC的内角A,B,C所对的边分别为a,b,c,且a=2,cos2B=-.(1)若b=4,求sinA的值;(2)若△ABC的面积S△ABC=4,求b,c的值.
北京的高考数学试卷中共有8道选择题,每个选择题都给了4个选项(其中有且仅有一个选项是正确的).评分标准规定:每题只选1项,答对得5分,不答或答错得0分.某考生每道题都给出了答案,已确定有4道题的答案是正确的,而其余的题中,有两道题每题都可判断其有两个选项是错误的,有一道题可以判断其一个选项是错误的,还有一道题因不理解题意只能乱猜.对于这8道选择题,试求:(Ⅰ) 该考生得分为40分的概率; (Ⅱ) 该考生所得分数的分布列及数学期望.
如图, 在矩形中,点分别在线段上,.沿直线将 翻折成,使平面.(Ⅰ)求二面角的余弦值;(Ⅱ)点分别在线段上,若沿直线将四边形向上翻折,使与重合,求线段的长。
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。求证:PC⊥BC;求点A到平面PBC的距离。
如图,四棱锥S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC平面SBC .(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A-DE-C的大小 .
已知三棱锥P—ABC中,PC⊥底面ABC,,,二面角P-AB-C为,D、F分别为AC、PC的中点,DE⊥AP于E.(Ⅰ)求证:AP⊥平面BDE; (Ⅱ)求直线EB与平面PAC所成的角。