(本小题满分12分.其中(Ⅰ)小问6分,(Ⅱ)小问6分) 已知,数列{an}满足:,. (Ⅰ)求证:; (Ⅱ)判断an与an+1的大小,并说明理由.
已知正三棱柱ABC—A1B1C1,底面边长AB=2,AB1⊥BC1,点O、O1分别是边AC,A1C1的中点,建立如图所示的空间直角坐标系.(Ⅰ)求正三棱柱的侧棱长.(Ⅱ)若M为BC1的中点,试用基底向量、、表示向量;(Ⅲ)求异面直线AB1与BC所成角的余弦值.
已知;¬是¬的必要不充分条件,求实数的取值范围.
为了研究某高校大学新生的视力情况,随机地抽查了该校100名进校学生的视力情况,得到频率分布直方图,如图.已知前4组的频数从左到右依次是等比数列的前4项,后6组的频数从左到右依次是等差数列的前6项.(Ⅰ)求等比数列的通项公式;(Ⅱ)求等差数列的通项公式;(Ⅲ)若规定视力低于5.0的学生属于近视学生,试估计该校新生的近视率的大小.
已知等腰中,.(Ⅰ)在线段上任取一点,求使的概率;(Ⅱ)在内任作射线,求使的概率.
(本题满分18分,第1小题满分6分,第2小题满分6分,第3小题满分6分) 已知函数,如果存在给定的实数对(),使得恒成立,则称为“S-函数”. (1)判断函数是否是“S-函数”; (2)若是一个“S-函数”,求出所有满足条件的有序实数对; (3)若定义域为的函数是“S-函数”,且存在满足条件的有序实数对和,当时,的值域为,求当时函数的值域.