(本小题满分12分.其中(Ⅰ)小问6分,(Ⅱ)小问6分) 已知,数列{an}满足:,. (Ⅰ)求证:; (Ⅱ)判断an与an+1的大小,并说明理由.
选修4-4:坐标系与参数方程在平面直角坐标系中,直线的参数方程为(为参数),直线与曲线交于两点.(Ⅰ)求的长;(Ⅱ)在以为极点,轴的正半轴为极轴建立极坐标系,设点的极坐标为,求点到线段中点的距离.
选修4-1:几何证明选讲如图,已知C点在⊙O直径的延长线上,CA切⊙O于A点,DC是∠ACB的平分线,交AE于F点,交AB于D点.(Ⅰ)求∠ADF的度数;(Ⅱ)若AB=AC,求AC:BC.
已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)若在上恒成立,求实数的取值范围;(Ⅲ)在(Ⅱ)的条件下,对任意的,求证:.
已知离心率为的椭圆的右焦点是圆的圆心,过椭圆上的动点作圆的两条切线分别交轴于(与点不重合)两点.(Ⅰ)求椭圆方程;(Ⅱ)求线段长的最大值,并求此时点的坐标.
如图,AB是半圆O的直径,C是半圆O上除A、B外的一个动点,DC垂直于半圆O所在的平面,DC∥EB,DC=EB,AB=4,.(Ⅰ)证明:平面ADE⊥平面ACD;(Ⅱ)当三棱锥C-ADE体积最大时,求二面角D-AE-B的余弦值.