(本小题满分13分.其中(Ⅰ)小问6分,(Ⅱ)小问7分)QQ先生的鱼缸中有7条鱼,其中6条青鱼和1条黑鱼,计划从当天开始,每天中午从该鱼缸中抓出1条鱼(每条鱼被抓到的概率相同)并吃掉.若黑鱼未被抓出,则它每晚要吃掉1条青鱼(规定青鱼不吃鱼).(Ⅰ)求这7条鱼中至少有6条被QQ先生吃掉的概率;(Ⅱ)以表示这7条鱼中被QQ先生吃掉的鱼的条数,求的分布列及其数学期望.
坐标系与参数方程. 在直角坐标系xoy中,直线的参数方程为(t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为. (1)求圆C的直角坐标方程; (2)设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|.
几何证明选讲. 如图,直线过圆心,交⊙于,直线交⊙于(不与重合),直线与⊙相切于,交于,且与垂直,垂足为,连结. 求证:(1); (2).
已知函数, (1)求函数的单调区间; (2)若函数在上是减函数,求实数的最小值; (3)若,使成立,求实数取值范围.
已知函数, (1)若x=1时取得极值,求实数的值; (2)当时,求在上的最小值; (3)若对任意,直线都不是曲线的切线,求实数的取值范围。
设命题:函数在上为减函数, 命题的值域为,命题函数定义域为 (1)若命题为真命题,求的取值范围。 (2)若或为真命题,且为假命题,求的取值范围.