若新规定这样一种运算法则:a※b=a2+2ab,例如3※(-2)=32+2×3×(-2)=-3试求(-2)※3的值若1※x="3" , 求x的值若(-2)※x=" -2+" x , 求x的值
某公司经销某品牌运动鞋,年销售量为10万双,每双鞋按250元销售,可获利25﹪,设每双鞋的成本价为元.(1)试求的值;(2)为了扩大销售量,公司决定拿出一定量的资金做广告,根据市场调查,若每年投入广告费为(万元)时,产品的年销售量将是原销售量的倍,且与之间的关系如图所示,可近似看作是抛物线的一部分.①根据图象提供的信息,求与之间的函数关系式;②求年利润(万元)与广告费(万元)之间的函数关系式,并请回答广告费(万元)在什么范围内,公司获得的年利润(万元)随广告费的增大而增多?(注:年利润=年销售总额-成本费-广告费)
如图,曲线C是函数在第一象限内的图象,抛物线是函数的图象.点()在曲线C上,且都是整数.(1)求出所有的点;(2)在中任取两点作直线,求所有不同直线的条数;(3)从(2)的所有直线中任取一条直线,求所取直线与抛物线有公共点的概率.
如图,反比例函数的图像与一次函数的图像交于点A(m,2),点B(-2, n ),一次函数图像与y轴的交点为C.求△AOC的面积。
如图所示,在平面直角坐标系中,一次函数y=kx+1,的图像与反比例函数的图像在第一象限相交于点A,过点A分别作x 轴、y轴的垂线,垂足为点B、C.如果四边形OBAC是正方形,求一次函数的关系式.
杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线的一部分,如图.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.