已知数列的前项和。(1)求数列的通项公式;(2)求的最大或最小值。
已知动点M到点A(2,0)的距离是它到点B(8,0)的距离的一半,求:(Ⅰ)动点M的轨迹方程;(Ⅱ)若N为线段AM的中点,试求点N的轨迹.
设集合A=,关于x的不等式的解集为B(其中a<0),设, ,且是的必要不充分条件,求实数a的取值范围.
已知函数 .(Ⅰ)求函数的单调区间;(Ⅱ)若函数的图像在点处的切线的斜率为,问: 在什么范围取值时,对于任意的,函数在区间上总存在极值?(Ⅲ)当时,设函数,若在区间上至少存在一个,使得成立,试求实数的取值范围.
已知函数,(Ⅰ)当时,求该函数的定义域和值域;(Ⅱ)如果在区间上恒成立,求实数的取值范围.
如图,四棱锥中,⊥底面,底面为梯形,,,且,点是棱上的动点.(Ⅰ)当∥平面时,确定点在棱上的位置;(Ⅱ)在(Ⅰ)的条件下,求二面角的余弦值.