(8分)如图①在正方形网格中有四边形ABCD.(1)利用网格作∠A、∠B的平分线;(2) ∠A、∠B的平分线交于点O,判断点O是否在其他两个角的平分线上;(3)从图中你还能发现什么结论?(4)如图②,在四边形ABCD中四个内角平分线仍相交于一点O,在上面这些结论中,哪些是必然事件,哪些是随机事件?试说明理由.
(本小题8分)某校兴趣小组坐游轮拍摄海河两岸美景.如图,游轮出发点A与望海楼B的距离为300 m.在一处测得望海校B位于A的北偏东30°方向.游轮沿正北方向行驶一段时间后到达C.在C处测得望海楼B位于C的北偏东60°方向.求此时游轮与望梅楼之间的距离BC (取l.73.结果保留整数).
(本小题8分)已知AB与⊙O相切于点C,OA=OB.OA、OB与⊙O分别交于点D、E.(I) 如图①,若⊙O的直径为8AB=10,求OA的长(结果保留根号);(Ⅱ)如图②,连接CD、CE,-若四边形dODCE为菱形.求的值.
(本小题8分)在我市开展的“好书伴我成长”读书活动中,某中学为了解八年级300名学生读书情况,随机调查了八年级50名学生读书的册数.统计数据如下表所示:(I) 求这50个样本数据的平均救,众数和中位数:(Ⅱ) 根据样本数据,估计该校八年级300名学生在本次活动中读书多于2册的人数。
(本小题8分)已知一次函数(b为常数)的图象与反比例函数(k为常数.且)的图象相交于点P(3.1).(I) 求这两个函数的解析式;(II) 当x>3时,试判断与的大小.井说明理由。
(本小题6分)解不等式组