②
把长与宽之比为的矩形纸片称为标准纸,请思考并解决下列问题:(1)将一张标准纸ABCD(AB<BC)对开,如图1所示,所得的矩形纸片ABEF是标准纸,请给予证明;(2)在一次综合实践课上,小明尝试着将矩形纸片ABCD(AB<BC)进行如下操作:第一步:沿过A点的直线折叠,使B点落在AD边上点F处,折痕为AE(如图2甲);第二步:沿过D点的直线折叠,使C点落在AD边上点N处,折痕为DG(如图2乙),此时E点恰好落在AE边上的点M处;第三步:沿直线DM折叠(如图2丙),此时点G恰好与N点重合.请你探究:矩形纸片ABCD是否是一张标准纸,请说明理由;(3)不难发现:将一张标准纸按如图3所示方式一次又一次对开后,所得的矩形纸片都是标准纸,现有一张标准纸ABCD,AB=1,,问第5次对开后所得标准纸的周长是多少?探索并直接写出第2014次对开后所得标准纸的周长.
如图,矩形ABCD的两条对角线相交于点O,∠AOD=120°,AB=6cm,求矩形的对角线长和面积.
如图所示,在矩形ABCD中,对角线AC,BD相交于点O,∠AOD=120°,AB+AC=9,求对角线BD的长及矩形ABCD的面积.
已知正方形ABCD的边长为a,两对角线相交于点O,P是射线AB上任意一点,过P点分别作直线AC、BD的垂线PE、PF,垂足为E、F.(1)如图(1),当P在线段AB上时,求PE+PF的值.(2)如图(2),当P在线段AB的延长线上时,求PE-PF的值.
如图,已知△ABC的三边长分别为a,b,c,它的三条中位线组成一个新三角形,这个新三角形的中位线又组成一个小三角形,……如此下去,试求:(1)第1个、第2个三条中位线所围成的三角形的周长分别是多少?(2)第n个三条中位线所围成三角形的周长是多少?