某自行车队根据队员速度的不同,分为快1组、快2组、慢1组和慢2组四个小组,在该车队的一次训练中,快1组和慢1组从甲地行进到乙地,剩下的组从乙地行进到甲地.快1组和慢1组同时从甲地出发,快1组的队员以高于慢1组队员10km/h的速度前行,快1组行驶一段时间后因某些原因又往回行驶(在往返过程中速度不变),最终与慢1组汇合,汇合后两组继续以各自的速度向乙地行进.设快1组和慢1组行驶的时间为t,与甲地的距离为s,s与t之间的函数图象如图所示.
(1)求OA解析式;
(2)已知甲地到乙地的距离为90km,在快1组与慢1组汇合时,慢2组(慢2组的速度与慢1组相同)由乙地开始出发,经过一段时间后,快1组和慢2组同时到达补给站.
①求此时慢2组与甲地之间的距离;
②若快2组在某一时刻也从乙地出发,速度与快1组相同,如果快2组不能比慢2组晚到甲地,求快2组比慢2组最多晚出发多少小时?