正△的边长为4,是边上的高,分别是和边的中点,现将△沿翻折成直二面角.(1)试判断直线与平面的位置关系,并说明理由;(2)求平面BDC与平面DEF的夹角的余弦值;(3)在线段上是否存在一点,使?证明你的结论.
已知PA⊥矩形ABCD所在平面,且AB=3,BC=4,PA=3,求点P到CD和BD的距离.
已知:,α⊥γ,β⊥γ,b∥α,b∥β. 求证:a⊥γ且b⊥γ.
α、β是两个不同的平面,m,n是平面α及β之外的两条不同直线,给出四个论断:①m⊥n,②α⊥β,③n⊥β,④m⊥α.以其中三个论断作为条件,余下的一个论断作为结论,写出你认为正确的一个命题,并证明它.
如图在ΔABC中, AD⊥BC,ED=2AE,过E作FG∥BC,且将ΔAFG沿FG折起,使∠A'ED=60°,求证:A'E⊥平面A'BC
两个相交平面a、b 都垂直于第三个平面g ,那么它们的交线a一定和第三个平面垂直.