已知函数。(I)当时,解不等式;(II)求的最大值。
已知函数(1)若函数在定义域内单调递增,求的取值范围;(2)若且关于x的方程在上恰有两个不相等的实数根,求实数的取值范围;(3)设各项为正的数列满足:求证:
如图,⊙的直径的延长线与弦的延长线相交于点,为⊙上一点,AE=AC ,交于点,且,(1)求的长度.(2)若圆F且与圆内切,直线PT与圆F切于点T,求线段PT的长度
甲乙两运动员进行射击训练,已知他们击中目标的环数都稳定在7,8,9,10环,且每次射击成绩互不影响,射击环数的频率分布表如下, 甲运动员
乙运动员
若将频率视为概率,回答下列问题, (1)求甲运动员击中10环的概率 (2)求甲运动员在3次射击中至少有一次击中9环以上(含9环)的概率 (3)若甲运动员射击2次,乙运动员射击1次,表示这3次射击中击中9环以上(含9环)的次数,求的分布列及.
设的内角所对的边分别为且.(1)求角的大小;(2)若,求的周长的取值范围.
设函数(1)求函数; (2)若存在常数k和b,使得函数对其定义域内的任意实数分别满足则称直线的“隔离直线”.试问:函数是否存在“隔离直线”?若存在,求出“隔离直线”方程,不存在,请说明理由.