正方形ABCD与正方形CEFG的位置如图所示,点G在线段CD或CD的延长线上. 分别连接BD,BF,FD,得到△BFD. (1)在图中,若正方形CEFG的边长分别为1,3,4,且正方形ABCD的边长均为3,请通过计算填写下表:
(2)若正方形CEFG的边长为a,正方形ABCD的边长为b,猜想S△BFD的大小,并结合图3证明你的猜想.
如图,已知直线AB:与抛物线交于A、B两点,(1)直线AB总经过一个定点C,请直接写出点C坐标;(2)当时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5;(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.
如图,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ、CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.
九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:
已知该商品的进价为每件30元,设销售该商品的每天利润为y元[(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.
如图,AB是⊙O的直径,C、P是上两点,AB=13,AC=5,(1)如图(1),若点P是的中点,求PA的长;(2)如图(2),若点P是的中点,求PA得长 .
袋中装有大小相同的2个红球和2个绿球,(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球,① 求第一次摸到绿球,第二次摸到红球的概率;② 求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.