(本小题满分13分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元。该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不低于51元(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为个,零件的实际出厂单价为元,写出函数的表达式;(3)当销售商一次订购多少个时,该厂获得的利润为6000元?(工厂售出一个零件的利润=实际出厂单价—成本)
某中学在高一开设了数学史等4门不同的选修课,每个学生必须选修,且只能从中选一门。该校高一的3名学生甲、乙、丙对这4门不同的选修课的兴趣相同。 (1)求恰有2门选修课这3个学生都没有选择的概率; (2)设随机变量为甲、乙、丙这三个学生选修数学史这门课的人数,求的分布列及期望,方差.
近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重,大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对入院的50人进行了问卷调查得到了如下的列联表:
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为. (1)请将上面的列联表补充完整; (2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由; 临界值表供参考:
参考公式:其中
已知函数. (1)当在点处的切线方程是y=x+ln2时,求a的值. (2)当的单调递增区间是(1,5)时,求a的取值集合.
已知5个乒乓球,其中3个新的,2个旧的,每次取1个,不放回的取两次, 求:(1)第一次取到新球的概率. (2)第二次取到新球的概率. (3)在第一次取到新球的条件下第二次取到新球的概率.
两人相约在7点到8点在某地会面,先到者等候另一个人20分钟方可离去.试求这两人能会面的概率?