如图,为圆的直径,点、在圆上,,矩形所在的平面和圆所在的平面互相垂直,且,.(1)设的中点为,求证:平面;(2)设平面将几何体分成的两个锥体的体积分别为,,求.
·大纲理)如图,四棱锥P-ABCD中,,,和都是等边三角形.(1)证明:;(2)求二面角A-PD-C的大小.
·上海理)如图,在长方体ABCD-A1B1C1D1中,AB=2,AD=1,A1A=1,证明直线BC1平行于平面DA1C,并求直线BC1到平面D1AC的距离.
如图,平面 PAC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,E,F,O分别为 PA,PB,AC的中点,AC=16,PA=PC=10. (1)设G是OC的中点,证明:FG∥平面BOE; (2)证明:在△ABO内存在一点M,使FM⊥平面BOE.
如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.求证: (1)直线EF∥平面PCD; (2)平面BEF⊥平面PAD.
如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是 棱AP,AC,BC,PB的中点.(1)求证:DE∥平面BCP; (2)求证:四边形DEFG为矩形; (3)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.