已知数列的相邻两项、是关于的方程的两根,且。(1)求证:数列是等比数列;(2)求数列的前项的和及数列的通项公式。
(本小题满分10分)选修4—4:坐标系与参数方程 已知直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程是. (1)写出直线的极坐标方程与曲线的普通方程; (2)若点是曲线上的动点,求到直线距离的最小值,并求出此时点的坐标.
(本小题满分10分)选修4—1:几何证明选讲 如图,已知是的直径,是的切线,为切点,,交于点,连接、、、,延长交于. (1)证明:; (2)证明:.
(本小题满分12分)设函数(其中为自然对数的底数,),曲线在点处的切线方程为. (1)求; (2)若对任意,有且只有两个零点,求的取值范围.
(本小题满分12分)已知椭圆的中心在坐标原点,右焦点为,、是椭圆的左、右顶点,是椭圆上异于、的动点,且面积的最大值为12. (1)求椭圆的方程; (2)求证:当点在椭圆上运动时,直线与圆恒有两个交点,并求直线被圆所截得的弦长的取值范围.
(本小题满分12分)如图,直三棱柱中,,,、分别为和上的点,且. (1)求证:当时,; (2)当为何值时,三棱锥的体积最小,并求出最小体积.