(本题满分16分)设函数y=f(x)对任意实数x,都有f(x)=2f(x+1),当x∈[0,1]时,f(x)=x2(1-x). (Ⅰ)已知n∈N+,当x∈[n,n+1]时,求y=f(x)的解析式;(Ⅱ)求证:对于任意的n∈N+,当x∈[n,n+1]时,都有|f(x)|≤;(Ⅲ)对于函数y=f(x)(x∈[0,+∞,若在它的图象上存在点P,使经过点P的切线与直线x+y=1平行,那么这样点有多少个?并说明理由
已知函数,其中实数. (1)当时,求不等式的解集; (2)若不等式的解集为,求的值.
在直角坐标系中,曲线的参数方程为为参数),以该直角坐标系的原点为极点,轴的正半轴为极轴的极坐标系下,曲线的方程为. (1)求曲线的普通方程和曲线的直角坐标方程; (2)设曲线和曲线的交点、,求.
如图,点是以线段为直径的圆上一点,于点,过点作圆的切线,与的延长线交于点,点是的中点,连结并延长与相交于点,延长与的延长线相交于点. (Ⅰ)求证:; (Ⅱ)求证:是圆的切线.
已知圆,圆,动圆与已知两圆都外切. (1)求动圆的圆心的轨迹的方程(2)直线与点的轨迹交于不同的两点、,的中垂线与轴交于点,求点的纵坐标的取值范围.
已知函数. (Ⅰ)如果函数在区间上是单调函数,求的取值范围; (Ⅱ)是否存在正实数,使得函数在区间内有两个不同的零点(是自然对数的底数)?若存在,求出实数的取值范围;若不存在,请说明理由.