如图,是边长为2的正三角形,记位于直线左侧的图形的面积为,试求函数的解析式.
某厂采用新技术改造后生产甲产品的产量x(吨)与相应的生产成本y(万元)的几组对照数据.
(1)请画出上表数据的散点图; (2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程=x+; (3)已知该厂技改前生产50吨甲产品的生产成本为40万元.试根据(2)求出的线性回归方程,预测生产50吨甲产品的生产成本比技改前降低多少万元? (参考数据:,)
设关于的一元二次方程. (1)若是从1,2,3,4四个数中任取的一个数,是从0,1,2三个数中任取的一个数,求上述方程有两个不等实根的概率; (2)若是从区间任取的一个数,是从区间任取的一个数,求上述方程有实根的概率.
在平面直角坐标系中,圆交轴于点(点在轴的负半轴上),点为圆上一动点,分别交直线于两点. (1)求两点纵坐标的乘积; (2)若点的坐标为,连接交圆于另一点, ①试判断点与以为直径的圆的位置关系,并说明理由; ②记的斜率分别为,试探究是否为定值?若是,请求出该定值;若不是,请说明理由.
如图,已知四边形和都是菱形,平面和平面互相垂直,且. (Ⅰ)求证: (Ⅱ)求四面体的体积.
如图,在平面直角坐标系xOy中,平行于轴且过点(3,2)的入射光线被直线反射.反射光线交轴于点,圆过点且与都相切. (1)求所在直线的方程和圆的方程; (2)设分别是直线和圆上的动点,求的最小值及此时点的坐标.