(本小题满分14分)已知椭圆的中心在坐标原点,焦点在轴上,长轴长为,离心率为,经过其左焦点的直线交椭圆于、两点(I)求椭圆的方程;(II)在轴上是否存在一点,使得恒为常数?若存在,求出点的坐标和这个常数;若不存在,说明理由.
已知,的最小值为.(Ⅰ)求的值;(Ⅱ)解关于的不等式.
在直角坐标系xOy中,曲线C1的参数方程为(α为参数).M是C1上的动点,P点满足=2,P点的轨迹为曲线C2.(1)求C2的方程;(2)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.
如图,⊙的半径为6,线段与⊙相交于点、,,,与⊙相交于点.(1)求长;(2)当⊥时,求证:.
设函数,其中.(Ⅰ)当时,求曲线在原点处的切线方程;(Ⅱ)试讨论函数极值点的个数;(Ⅲ)求证:对任意的,不等式恒成立.
已知椭圆:的离心率为,右顶点是抛物线的焦点.直线:与椭圆相交于,两点.(Ⅰ)求椭圆的方程;(Ⅱ)如果,点关于直线的对称点在轴上,求的值.