(本小题满分14分)已知椭圆的中心在坐标原点,焦点在轴上,长轴长为,离心率为,经过其左焦点的直线交椭圆于、两点(I)求椭圆的方程;(II)在轴上是否存在一点,使得恒为常数?若存在,求出点的坐标和这个常数;若不存在,说明理由.
已知数列是等差数列,且. (1)求数列的通项公式;(2)令,求数列前n项和.
已知函数,其中, (1)当时,求曲线在点处的切线方程; (2)讨论的单调性; (3)若有两个极值点和,记过点的直线的斜率为,问是否存在,使得?若存在,求出的值,若不存在,请说明理由.
已知抛物线的焦点为椭圆的右焦点,且椭圆的长轴长为4,M、N是椭圆上的的动点. (1)求椭圆标准方程; (2)设动点满足:,直线与的斜率之积为,证明:存在定点使 得为定值,并求出的坐标; (3)若在第一象限,且点关于原点对称,垂直于轴于点,连接并延长交椭圆于点,记直线的斜率分别为,证明:.
在四棱锥中,,,,为的中点,为的中点,. (1)求证:; (2)求证:; (3)求三棱锥的体积.
已知等差数列的前项和为. (1)请写出数列的前项和公式,并推导其公式; (2)若,数列的前项和为,求的和.