(本题满分12分)
如图,正方形 ABCD ,点 E , F 分别在 AD , CD 上,且 DE = CF , AF 与 BE 相交于点 G .
(1)求证: BE = AF ;
(2)若 AB = 4 , DE = 1 ,求 AG 的长.
某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动.为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查,将他们的得分按优秀、良好、合格、待合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图.
等级
频数
频率
优秀
21
良好
合格
6
待合格
3
(1)本次调查随机抽取了 名学生;表中 , ;
(2)补全条形统计图;
(3)若全校有2000名学生,请你估计该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有多少人.
先化简,再求值:,其中.
计算:.
已知抛物线过点,两点,与轴交于点,.
(1)求抛物线的解析式及顶点的坐标;
(2)过点作,垂足为,求证:四边形为正方形;
(3)点为抛物线在直线下方图形上的一动点,当面积最大时,求点的坐标;
(4)若点为线段上的一动点,问:是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.