((本题13分)汽车和自行车分别从A地和C地同时开出,如下图,各沿箭头方向(两方向垂直)匀速前进,汽车和自行车的速度分别是10米/秒和5米/秒,已知AC=100米。(汽车开到C地即停止)(1)经过秒后,汽车到达B处,自行车到达D处,设B、D间距离为,写出关于的函数关系式,并求出定义域。(2)经过多少时间后,汽车和自行车之间的距离最短?最短距离是多少?
如图1,在直角梯形中,,,,为线段的中点.将沿折起,使平面平面,得到几何体,如图2所示.(Ⅰ) 求证:平面;(Ⅱ) 求二面角的余弦值.
为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别进行抽样检查,测得身高频数分布表如下表1、表2.表1:男生身高频数分布表表2:女生身高频数分布表 (1) 求该校男生的人数并完成下面频率分布直方图;(2)估计该校学生身高(单位:cm)在的概率;(3)在男生样本中,从身高(单位:cm)在的男生中任选3人,设表示所选3人中身高(单位:cm)在的人数,求的分布列和数学期望.
(本小题满分10分)选修4-5:不等式选讲设函数,其中.(Ⅰ)当时,求不等式的解集;(Ⅱ)若不等式的解集为 ,求a的值.
(本题满分为12分)已知函数的图像过坐标原点,且在点处的切线的斜率是.(1)求实数的值; (2)求在区间上的最大值;
(本题满分为12分)已知椭圆中心在原点,焦点在y轴上,焦距为4,离心率为.(I)求椭圆方程;(II)设椭圆在y轴的正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段所成的比为2,求线段AB所在直线的方程.