(本小题满分12分)已知函数 (1)当时,求函数的最大值和最小值;(2)求实数的取值范围,使在区间上是单调减函数
(本小题满分13分)已知椭圆C:(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形. (1)求椭圆C的标准方程. (2)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C于点P,Q. ①证明:OT平分线段PQ(其中O为坐标原点); ②当最小时,求点T的坐标.
(本小题满分12分)如图,四棱锥中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=2PA=2AB=2BC=2. (1)求三棱锥的外接球的体积; (2)求二面角与二面角的正弦值之比.
已知数列的前项和为,向量,,满足条件,且. (1)求数列的通项公式; (2)设函数,数列满足条件, ①求数列的通项公式; ②设,求数列的前和.
(本小题满分12分)某城市有东西南北四个进入城区主干道的入口,在早高峰时间段,时常发生交通拥堵现象,交警部门统计11月份30天内的拥堵天数,东西南北四个主干道入口的拥堵天数分别是18天,15天,9天,15天.假设每个入口发生拥堵现象互相独立,视频率为概率. (1)求该城市一天中早高峰时间段恰有三个入口发生拥堵的概率; (2)设表示一天中早高峰时间段发生拥堵的主干道入口个数,求的分布列和数学期望.
【改编】已知函数,R,是函数的一个零点. (1)求的值,并求函数的对称轴及单调递增区间; (2)若,且,,求的值.