给出命题p: ;命题q:曲线与轴交于不同的两点.如果命题“”为真,“”为假,求实数的取值范围.
如图,在直线之间表示的是一条河流,河流的一侧河岸(x轴)是一条公路,且公路随时随处都有公交车来往. 家住A(0,a)的某学生在位于公路上B(d,0)(d>0)处的学校就读. 每天早晨该学生都要从家出发,可以先乘船渡河到达公路上某一点,再乘公交车去学校,或者直接乘船渡河到达公路上B(d, 0)处的学校. 已知船速为,车速为(水流速度忽略不计). (Ⅰ)若d=2a,求该学生早晨上学时,从家出发到达学校所用的最短时间;
(Ⅱ)若,求该学生早晨上学时,从家出发到达学校所用的最短时间.
求过点A(2,0)、B(6,0)和C(0,-2)的圆的方程。
如图,P是边长为3的正方形ABCD所在平面外的一点,PD⊥平面ABCD,O、E、F分别是AC、PA、PB的中点.求证:平面EFO∥ 平面PDC;
求过点2x+y+8=0和x+y+3=0的交点,且与直线2x+3y-7=0垂直的直线方程。