(本小题满分14分)定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”。如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比。已知椭圆。(1)若椭圆,判断与是否相似?如果相似,求出与的相似比;如果不相似,请说明理由;(2)写出与椭圆相似且短半轴长为的椭圆的方程;若在椭圆上存在两点、关于直线对称,求实数的取值范围?(3)如图:直线与两个“相似椭圆”和分别交于点和点,证明:
在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为,曲线的参数方程为(为对数),求曲线截直线所得的弦长.
已知矩阵对应的线性变换把点变成点,求矩阵的特征值以及属于没个特征值的一个特征向量.
已知函数 (为实常数)。 (Ⅰ)当时,求函数的单调区间; (Ⅱ)若函数在区间上无极值,求的取值范围; (Ⅲ)已知且,求证: .
已知A、B、C是椭圆上的三点,其中点A的坐标为,BC过椭圆m的中心,且 (1)求椭圆的方程; (2)过点的直线l(斜率存在时)与椭圆m交于两点P,Q, 设D为椭圆m与y轴负半轴的交点,且,求实数t的取值范围.
如图:在多面体中,,,,。 (1)求证:; (2)求证:; (3)求二面角的余弦值。