(本小题满分12分)已知关于x的二次函数f(x)=ax2-4bx+1.(1)设集合P={-1,1,2,3,4,5}和Q={-2,-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;增函数的概率.
两直线分别过A(-a,0),B(a,0)且绕A,B旋转,它们在y轴上的截距分别为b1,b2,b1,b2=a2,求两直线交点的轨迹方程.
已知函数,试研究该函数的性质.
已知函数在上为增函数,且,为常数,. (1)求的值; (2)若在上为单调函数,求的取值范围; (3)设,若在上至少存在一个,使得成立,求的取值范围.
已知椭圆C的中心在原点,焦点在轴上,椭圆上的点到左、右焦点的距离之和为,离心率. (1)求椭圆C的方程; (2)过左焦点的直线与椭圆C交于点,以为邻边作平行四边形,求该平行四边形对角线的长度的取值范围.
如图:在直角三角形ABC中,已知, D为AC的中点,E为BD的中点,AE的延长线交BC于F,将△ABD沿BD折起,二面角的大小记为. ⑴求证:平面平面BCD; ⑵当时,求的值; ⑶在⑵的条件下,求点C到平面的距离.