(本小题满分8分)甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线、线段分别表示甲、乙两车所行路程(千米)与时间(小时)之间的函数关系对应的图象(线段表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题:(1)求乙车所行路程与时间的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)
如图,在直角坐标系中,的两条直角边分别在轴的负半轴,轴的负半轴上,且.将绕点按顺时针方向旋转,再将所得的图象沿轴正方向平移个单位,得.写出点的坐标求点和点之间的距离.
电焊工想利用一块边长为的正方形钢板做成一个扇形,于是设计了以下三种方案: 方案一:如图1,直接从钢板上割下扇形. 方案二:如图2,先在钢板上沿对角线割下两个扇形,再焊接成一个大扇形(如图3). 方案三:如图4,先把钢板分成两个相同的小矩形,并在每个小矩形里割下两个小扇形,然后将四个小扇形按与图3类似的方法焊接成一个大扇形. 图1图2图3容易得出图1、图3中所得扇形的圆心角均为,那么按方案三所焊接成的大扇形的圆心角也为吗?为什么?容易得出图1中扇形与图3中所得大扇形的面积相等,那么按方案三所焊成的大扇形的面积也与方案二所焊接成的大扇形的面积相等吗?若不相等,面积是增大还是减小?为什么?若将正方形钢板按类似图4的方式割成个相同的小矩形,并在每个小矩形里割下两个小扇形,然后将这个小扇形按类似方案三的方式焊接成一个大扇形,则当逐渐增大时,所焊接成的大扇形的面积如何变化?
如图,△ABC中,AD⊥BC,点E在AC的垂直平分线上,且BD=DE如果∠BAE= 40°,那么∠C=_______,∠B=_______;如果△ABC的周长为13cm,AC=6cm,那么△ABE的周长=_________cm你发现线段AB与BD的和等于图中哪条线段的长,并证明你的结论.
已知:∠B=∠C,AD是△ABC的角平分线,DE⊥AB于E,DF⊥AC于F. 求证:BE=CF.
如图, AD∥BC,BD平分∠ABC,∠A=120°,∠C=60°,AB=CD=4cm, 求四边形ABCD的周长