(本小题满分8分)甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线、线段分别表示甲、乙两车所行路程(千米)与时间(小时)之间的函数关系对应的图象(线段表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题:(1)求乙车所行路程与时间的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)
(本小题满分10分)(1) 解方程:=+2;(2) 解不等式组:.
(本小题满分8分)(1) 计算:-2-(π-2015)0-cos60°;(2) 化简:.
如图,已知二次函数y=ax2+bx+8(a≠0)的图象与x轴交于点A(﹣2,0),B,与y轴交于点C,tan∠ABC=2.(1)求抛物线的解析式及其顶点D的坐标;(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得经过点P的直线PM垂直于直线CD,且与直线OP的夹角为75°?若存在,求出点P的坐标;若不存在,请说明理由;(3)过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴向上平移,使抛物线与线段EF总有公共点.试探究:抛物线最多可以向上平移多少个单位长度?
如图1,在△ABC中,∠ACB=90°,经过点B的直线l(l不与直线AB重合)与直线BC的夹角的大小等于∠ABC,分别过点C、A作直线l的垂线,垂足分别为点D、E(1)写出线段AE、CD之间的数量关系,并加以证明;(2)当△ABC的位置旋转到图2或图3时,设直线CE、AB交于点F,且,CD=4,请你在图2和图3中任选一种情况,求此时BD的长.
有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依此类推,即每多买一台则所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购买一批图形计算器:(1)若此单位需购买6台图形计算器,应去哪家公司购买花费较少;(2)若此单位恰好花费7500元,在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的,数量是多少?