(本小题6分)有下面3个结论: ①存在两个不同的无理数, 它们的积是整数;②存在两个不同的无理数, 它们的差是整数;③存在两个不同的非整数的有理数, 它们的和与商都是整数. 先判断这3个结论分别是正确还是错误的, 如果正确, 请举出符合结论的两个数.
中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩 x 取整数,总分100分)作为样本进行整理,得到下列统计图表:
抽取的200名学生海选成绩分组表
组别
海选成绩 x
A 组
50 ⩽ x < 60
B 组
60 ⩽ x < 70
C 组
70 ⩽ x < 80
D 组
80 ⩽ x < 90
E 组
90 ⩽ x < 100
请根据所给信息,解答下列问题:
(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)
(2)在图2的扇形统计图中,记表示 B 组人数所占的百分比为 a % ,则 a 的值为 ,表示 C 组扇形的圆心角 θ 的度数为 度;
(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?
如图,已知四边形 ABCD 内接于圆 O ,连接 BD , ∠ BAD = 105 ° , ∠ DBC = 75 ° .
(1)求证: BD = CD ;
(2)若圆 O 的半径为3,求 BC ̂ 的长.
湖州市菱湖镇某养鱼专业户准备挖一个面积为2000平方米的长方形鱼塘.
(1)求鱼塘的长 y (米 ) 关于宽 x (米 ) 的函数表达式;
(2)由于受场地的限制,鱼塘的宽最多只能挖20米,当鱼塘的宽是20米,鱼塘的长为多少米?
在线段 AB 的同侧作射线 AM 和 BN ,若 ∠ MAB 与 ∠ NBA 的平分线分别交射线 BN , AM 于点 E , F , AE 和 BF 交于点 P .如图,点点同学发现当射线 AM , BN 交于点 C ;且 ∠ ACB = 60 ° 时,有以下两个结论:
① ∠ APB = 120 ° ;② AF + BE = AB .
那么,当 AM / / BN 时:
(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出 ∠ APB 的度数,写出 AF , BE , AB 长度之间的等量关系,并给予证明;
(2)设点 Q 为线段 AE 上一点, QB = 5 ,若 AF + BE = 16 ,四边形 ABEF 的面积为 32 3 ,求 AQ 的长.
已知函数 y 1 = a x 2 + bx , y 2 = ax + b ( ab ≠ 0 ) .在同一平面直角坐标系中.
(1)若函数 y 1 的图象过点 ( − 1 , 0 ) ,函数 y 2 的图象过点 ( 1 , 2 ) ,求 a , b 的值.
(2)若函数 y 2 的图象经过 y 1 的顶点.
①求证: 2 a + b = 0 ;
②当 1 < x < 3 2 时,比较 y 1 , y 2 的大小.