如图,在四棱锥中,底面为正方形,侧棱底面,,垂足为,是的中点.(Ⅰ)证明:∥平面;(Ⅱ)证明:平面⊥平面.
定义在上的偶函数,已知当时的解析式(Ⅰ)写出在上的解析式;(Ⅱ)求在上的最大值.
函数的定义域为A,值域为B,求.
计算(Ⅰ)(Ⅱ)
设分别是椭圆的左右焦点,过左焦点作直线与椭圆交于不同的两点、.(Ⅰ)若,求的长;(Ⅱ)在轴上是否存在一点,使得为常数?若存在,求出点的坐标;若不存在,说明理由
四棱锥中,面,为菱形,且有,,∠,为中点.(Ⅰ)证明:面;(Ⅱ)求二面角的平面角的余弦值.