如图,在四棱锥中,底面为正方形,侧棱底面,,垂足为,是的中点.(Ⅰ)证明:∥平面;(Ⅱ)证明:平面⊥平面.
已知向量(1)证明: (2)若向量满足,且,求.
已知函数(1)求函数的最小正周期及单调递减区间;(2)若将函数的图像向右平移个单位,得到函数的图像,求在区间上的最大值和最小值,并求出相应的x的取值。
设有半径为3的圆形村落,A、B两人同时从村落中心出发,B向北直行,A先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B相遇.设A、B两人速度一定,其速度比为3:1,问两人在何处相遇?
已知点A、B的坐标分别是A(0,-1),B(0,1),直线AM、BM相交于点M,且它们的斜率之积是-t,t∈(0,1].求M的轨迹方程,并说明曲线的类型.
已知函数f(x)=(m,n∈R)在x=1处取得极大值2.(1)求函数f(x)的解析式;(2)求函数f(x)的极值;(3)设函数g(x)=x2-2ax+a,若对于任意x2∈[-1,1],总存在x1∈R,使得g(x2)≤f(x1),求实数a的取值范围.